The Fourth Order Accuracy Decomposition Scheme for an Evolution Problem
نویسندگان
چکیده
In the present work, the symmetrized sequential-parallel decomposition method with the fourth order accuracy for the solution of Cauchy abstract problem with an operator under a split form is presented. The fourth order accuracy is reached by introducing a complex coefficient with the positive real part. For the considered scheme, the explicit a priori estimate is obtained. Mathematics Subject Classification. 65M12, 65M15, 65M55. Received: July 31, 2003. Revised: May 25, 2004.
منابع مشابه
Unconditionally Stable Difference Scheme for the Numerical Solution of Nonlinear Rosenau-KdV Equation
In this paper we investigate a nonlinear evolution model described by the Rosenau-KdV equation. We propose a three-level average implicit finite difference scheme for its numerical solutions and prove that this scheme is stable and convergent in the order of O(τ2 + h2). Furthermore we show the existence and uniqueness of numerical solutions. Comparing the numerical results with other methods in...
متن کاملNON-POLYNOMIAL QUARTIC SPLINE SOLUTION OF BOUNDARY-VALUE PROBLEM
Quartic non-polynomial spline function approximation in off step points is developed, for the solution of fourth-order boundary value problems. Using consistency relation of such spline and suitable choice of parameter,we have obtained second, fourth and sixth orders methods. Convergence analysis of sixth order method has been given. The methods are illustrated by some examples, to verify the or...
متن کاملA stable iteration to the matrix inversion
The matrix inversion plays a signifcant role in engineering and sciences. Any nonsingular square matrix has a unique inverse which can readily be evaluated via numerical techniques such as direct methods, decomposition scheme, iterative methods, etc. In this research article, first of all an algorithm which has fourth order rate of convergency with conditional stability will be proposed. ...
متن کاملFourth-order numerical solution of a fractional PDE with the nonlinear source term in the electroanalytical chemistry
The aim of this paper is to study the high order difference scheme for the solution of a fractional partial differential equation (PDE) in the electroanalytical chemistry. The space fractional derivative is described in the Riemann-Liouville sense. In the proposed scheme we discretize the space derivative with a fourth-order compact scheme and use the Grunwald- Letnikov discretization of the Ri...
متن کاملIntegration Scheme for SINS/GPS System Based on Vertical Channel Decomposition and In-Motion Alignment
Accurate alignment and vertical channel instability play an important role in the strap-down inertial navigation system (SINS), especially in the case that precise navigation has to be achieved over long periods of time. Due to poor initialization as well as the cumulative errors of low-cost inertial measurement units (IMUs), initial alignment is not sufficient to achieve required navigation ac...
متن کامل